Search Site

Algebra

Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology

Alphabetical Index Interactive Entries Random Entry New in *MathWorld*

MathWorld Classroom

About *MathWorld* Send a Message to the Team

Order book from Amazon

Last updated: 12,637 entries Sat Dec 23 2006

Created, developed, and nurtured by Eric Weisstein at Wolfram Research Calculus and Analysis > Special Functions > Trigonometric Functions Discrete Mathematics > Experimental Mathematics

Inverse Tangent

DOWNLOAD Mathematica Notebook

The inverse tangent is the multivalued function $\tan^{-1} z$ (Zwillinger 1995, p. 465), also denot 79; Harris and Stocker 1998, p. 311; Jeffrey 2000, p. 124) or $\operatorname{arctg} z$ (Spanier and Oldham p. 208; Jeffrey 2000, p. 127), that is the inverse function of the tangent. The variants Arct: 1997, p. 70) and $\operatorname{Tan}^{-1} z$ are sometimes used to refer to explicit principal values of the inve always made (e.g., Zwillinger 1995, p. 466).

The inverse tangent function $\tan^{-1} x$ is plotted above along the real axis.

Worse yet, the notation $\arctan z$ is sometimes used for the principal value, with $\operatorname{Arctan} z$ bei (Abramowitz and Stegun 1972, p. 80). Note that in the notation $\tan^{-1} z$ (commonly used in worldwide), $\tan z$ denotes the tangent and -1 the inverse function, *not* the multiplicative inv

The principal value of the inverse tangent is implemented as $\operatorname{ArcTan}[z]$ in *Mathematica*. In 1 (*double x*).

The inverse tangent is a multivalued function and hence requires a branch cut in the comple places at $(-i \infty, -i]$ and $[i, i \infty)$. This follows from the definition of $\tan^{-1} z$ as

$$\tan^{-1} z = \frac{1}{2} i \left[\ln \left(1 - i z \right) - \ln \left(1 + i z \right) \right].$$

In *Mathematica* (and in this work), this branch cut definition determines the range of tan⁻¹ :

taken, however, as other branch cut definitions can give different ranges (most commonly,

The inverse tangent function $\tan^{-1} z$ is plotted above in the complex plane.

 $\tan^{-1} z$ has the special values

tan ⁻¹ (−∞)	=	$-\frac{1}{2}\pi$
tan ⁻¹ (<i>i</i>)	=	$-i\infty$
tan ⁻¹ O	=	0
tan ⁻¹ i	=	$i\infty$
tan ⁻¹ ∞	=	$\frac{1}{2}\pi$.

The derivative of $\tan^{-1} z$ is

$$\frac{d}{d z} \tan^{-1} z = \frac{1}{1 + z^2}$$

and the indefinite integral is

$$\int \tan^{-1} z \, dz = z \tan^{-1} z - \frac{1}{2} \ln (1 + z^2) + C.$$

$$Re[\tan^{-1}(\frac{y}{x})] \qquad \lim[\tan^{-1}(\frac{y}{x})] \qquad \lim_{d \to -\frac{1}{2}} \frac{1}{2} + \frac{1}{2$$

The complex argument of a complex number z = x + i y is often written as

$$\theta = \tan^{-1}\left(\frac{y}{x}\right),$$

where θ , sometimes also denoted ϕ , corresponds to the counterclockwise angle from the po $x = \cos \theta$ and $y = \sin \theta$. Plots of $\tan^{-1} (y/x)$ are illustrated above for real values of x and y.

A special kind of inverse tangent that takes into account the quadrant in which *z* lies and is x), the GNU C library command atan2(double y, double x), and the *Mathematica* command range $-\pi < \theta \le \pi$. In the degenerate case when x = 0,

$$\phi = \begin{cases} -\frac{1}{2} \pi & \text{if } y < 0\\ \text{undefined} & \text{if } y = 0\\ \frac{1}{2} \pi & \text{if } y > 0. \end{cases}$$

The usual $\tan^{-1} z$ has the Maclaurin series of

$$\tan^{-1} z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{2n+1}$$
$$= z - \frac{1}{3} z^3 + \frac{1}{5} z^5 - \frac{1}{7} z^7 + \dots$$

(Sloane's A033999 and A005408). A more rapidly converging form due to Euler is given by

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{2^{2n} (n!)^2}{(2n+1)!} \frac{x^{2n+1}}{(1+x^2)^{n+1}}$$

for real X (Castellanos 1988). This is related to the formula of Euler given by

$$\tan^{-1} x = \frac{y}{x} \left(1 + \frac{2}{3} y + \frac{2 \cdot 4}{3 \cdot 5} y^2 + \frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} y^3 + \ldots \right),$$

where

$$y \equiv \frac{x^2}{1+x^2}.$$

The inverse tangent formulas are connected with many interesting approximations to pi

$$\tan^{-1}(1+x) = \frac{1}{4}\pi + \frac{1}{2}x - \frac{1}{4}x^2 + \frac{1}{12}x^3 - \frac{1}{40}x^5 + \frac{1}{48}x^6 - \frac{1}{112}x^7 + \dots$$

(Sloane's A075553 and A075554).

The inverse tangent satisfies

$$\tan^{-1} z = \cot^{-1} \left(\frac{1}{z}\right)$$

for $z \neq 0$,

$$\tan^{-1} z = -\tan^{-1} (-z)$$

for all complex Z,

$$\tan^{-1} x = \frac{1}{2} \pi - \cos^{-1} \left(\frac{x}{\sqrt{x^2 + 1}} \right)$$
$$= \sin^{-1} \left(\frac{x}{\sqrt{x^2 + 1}} \right)$$
$$= \csc^{-1} \left(\frac{\sqrt{x^2 + 1}}{x} \right)$$

2

for all real x, where equality for the last equation is understood to be in the limit as $x \rightarrow 0$,

$$\tan^{-1} x = \begin{cases} -\frac{1}{2} \pi - \tan^{-1} \left(\frac{1}{x}\right) & \text{for } x < 0\\ \frac{1}{2} \pi - \tan^{-1} \left(\frac{1}{x}\right) & \text{for } x > 0\\ \frac{1}{2} \pi - \tan^{-1} \left(\frac{1}{x}\right) & \text{for } x > 0\\ \frac{1}{2} \pi + \cot^{-1} (-x) & \text{for } x > 0\\ \frac{1}{2} \pi - \cot^{-1} x & \text{for } x < 0\\ \frac{1}{2} \pi - \cot^{-1} x & \text{for } x > 0\\ \frac{1}{2} \pi - \cot^{-1} x & \text{for } x > 0\\ (-\cos^{-1} \left(\frac{1}{\sqrt{x^2 + 1}}\right) & \text{for } x < 0\\ \cos^{-1} \left(\frac{1}{\sqrt{x^2 + 1}}\right) & \text{for } x > 0\\ = \begin{cases} -\sec^{-1} \left(\sqrt{x^2 + 1}\right) & \text{for } x < 0\\ \sec^{-1} \left(\sqrt{x^2 + 1}\right) & \text{for } x > 0. \end{cases}$$

In terms of the hypergeometric function,

$$\tan^{-1} z = z_2 F_1 \left(1, \frac{1}{2}; \frac{3}{2}; -z^2 \right)$$

for complex z, and

http://mathworld.wolfram.com/InverseTangent.html

$$\tan^{-1} x = \frac{x}{1+x^2} {}_2 F_1\left(1, 1; \frac{3}{2}; \frac{x^2}{1+x^2}\right)$$

for real X (Castellanos 1988).

Castellanos (1986, 1988) also gives some curious formulas in terms of the Fibonacci numbe

$$\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n F_{2n+1} t^{2n+1}}{5^n (2n+1)}$$
$$= 5 \sum_{n=0}^{\infty} \frac{(-1)^n F_{2n+1}^2}{(2n+1) \left(u + \sqrt{u^2 + 1}\right)^{2n+1}}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n 5^{n+2} F_{2n+1}^3}{(2n+1) \left(v + \sqrt{v^2 + 5}\right)^{2n+1}},$$

where

$$t \equiv \frac{2x}{1+\sqrt{1+\frac{4x^2}{5}}}$$

$$u \equiv \frac{5}{4x} \left(1+\sqrt{1+\frac{24}{25}x^2}\right),$$

and $\boldsymbol{\nu}$ is the largest positive root of

$$8 \times v^4 - 100 v^3 - 450 \times v^2 + 875 v + 625 x = 0.$$

The inverse tangent satisfies the addition formula

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - x y} \right)$$

for -1 < x, y < 1, as well as the more complicated formulas

$$\tan^{-1}\left(\frac{1}{a-b}\right) = \tan^{-1}\left(\frac{1}{a}\right) + \tan^{-1}\left(\frac{b}{a^2 - ab + 1}\right)$$
$$\tan^{-1}\left(\frac{1}{a}\right) = 2\tan^{-1}\left(\frac{1}{2a}\right) - \tan^{-1}\left(\frac{1}{4a^3 + 3a}\right)$$
$$\tan^{-1}\left(\frac{1}{p}\right) = \tan^{-1}\left(\frac{1}{p+q}\right) + \tan^{-1}\left(\frac{q}{p^2 + pq + 1}\right),$$

the latter of which was known to Euler. Another interesting inverse tangent identity attribut Lehmer (1938b; Bromwich 1965, Castellanos 1988ab) is

$$\tan^{-1}(p+r) + \tan^{-1}(p+q) - \tan^{-1}p = \frac{1}{2}\pi,$$

where

$$1 + p^2 = qr$$

and p, q, r > 0.

The inverse tangent has continued fraction representations

$$\tan^{-1} x = \frac{x}{1 + \frac{x^2}{3 + \frac{4x^2}{5 + \frac{9x^2}{7 + \frac{16x^2}{9 + 10x^2}}}}}$$

(Lambert 1770; Lagrange 1776; Wall 1948, p. 343; Olds 1963, p. 138) and

$$\tan^{-1} x = \frac{x}{1 + \frac{x^2}{3 - x^2 + \frac{9 x^2}{5 - 3 x^2 + \frac{25 x^2}{7 - 5 x^2 + \dots}}}}$$

due to Euler and sometimes known as Euler's continued fraction (Borwein *et al.* 2004, p. 30 To find $\tan^{-1} x$ numerically, the following arithmetic-geometric mean-like algorithm can be

$$a_0 = (1 + x^2)^{-1/2}$$

 $b_0 = 1.$

Then compute

$$\begin{array}{rcl} a_{i+1} & = & \frac{1}{2} \left(a_i + b_i \right) \\ b_{i+1} & = & \sqrt{a_{i+1} b_i} \,, \end{array}$$

and the inverse tangent is given by

$$\tan^{-1} x = \lim_{n \to \infty} \frac{x}{\sqrt{1 + x^2} \ \alpha_n}$$

(Acton 1990).

An inverse tangent $\tan^{-1} n$ with integral *n* is called reducible if it is expressible as a finite su

$$\tan^{-1}n = \sum_{k=1} f_k \tan^{-1} n_k,$$

where f_k are positive or negative integers and n_i are integers $< n \cdot \tan^{-1} m$ is reducible iff a the prime factors of $1 + n^2$ for n = 1, ..., m - 1. A second necessary and sufficient condition less than 2m. Equivalent to the second condition is the statement that every Gregory numb a sum in terms of t_m s for which m is a Størmer number (Conway and Guy 1996). To find this

$$\arg(1+i n) = \arg \prod_{k=1}^{n} (1+n_k i)^{f_k},$$

so the ratio

$$r = \frac{\prod_{k=1}^{k} (1 + n_k i)^{f_k}}{1 + i n}$$

is a rational number. Equation (50) can also be written

$$r^{2}(1+n^{2}) = \prod_{k=1}^{n} (1+n_{k}^{2})^{f_{k}}.$$

Writing () in the form

$$\tan^{-1} n = \sum_{k=1}^{\infty} f_k \tan^{-1} n_k + f \tan^{-1} 1$$

allows a direct conversion to a corresponding inverse cotangent formula

$$\cot^{-1} n = \sum_{k=1} f_k \cot^{-1} n_k + c \cot^{-1} 1,$$

where

$$c = 2 - f - 2\sum_{k=1} f_r.$$

Todd (1949) gives a table of decompositions of $\tan^{-1} n$ for $n \le 342$. Conway and Guy (1996) numbers.

Arndt and Gosper give the remarkable inverse tangent identity

$$\sin\left(\sum_{k=1}^{2n+1} \tan^{-1} \alpha_k\right) = \frac{(-1)^n}{2n+1} \frac{\sum_{k=1}^{2n+1} \prod_{j=1}^{2n+1} \left[\alpha_j - \tan\left(\frac{\pi(j-k)}{2n+1}\right)\right]}{\sqrt{\prod_{j=1}^{2n+1} (\alpha_j^2 + 1)}}.$$

There is an amazing set of BBP-type formulas for $\tan^{-1} (4/5)$

		$\frac{1}{131072} \sum_{k=0}^{\infty} \frac{1}{1048576^k} \Big[$
$\left(\frac{4}{5}\right)$	=	$\frac{262144}{40\ k+2} - \frac{163840}{40\ k+5} - \frac{65536}{40\ k+6} + \frac{16384}{40\ k+10} - \frac{4096}{40\ k+10}$
		$\frac{256}{160} + \frac{160}{160} + \frac{64}{160} - \frac{16}{160} + \frac{16}{160}$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		131072 $\sum_{k=0}^{4} 1048576^{k}$
		393216 163840 131072 163840 24576
	=	$\frac{1}{40k+4} + \frac{1}{40k+5} - \frac{1}{40k+6} - \frac{1}{40k+8} + \frac{1}{40k+1}$
		10240 1024 512 640
		40 k + 16 40 k + 20 40 k + 22 40 k + 24 40
		32 40 15 6
		40 k + 30 40 k + 32 40 k + 35 40 k + 36
		$\frac{1}{1}$ $\sum_{i=1}^{n}$ $\frac{1}{1}$
		131072 $\underset{k=0}{\rightharpoonup}$ 1048576 ^k l
		262144 262144 65536 327680 65536
		$\frac{1}{10}$
		407 + 1 407 + 5 407 + 5 407 + 6 407 + 7
		$\frac{40960}{40960} = \frac{16384}{16384} = \frac{4096}{40960} = \frac{20480}{1} = \frac{1}{1}$
	=	$\frac{40960}{40 k + 10} - \frac{16384}{40 k + 11} - \frac{4096}{40 k + 13} - \frac{20480}{40 k + 14} - \frac{1}{40}$
	=	$\frac{40\% + 1}{40\% + 10} = \frac{16384}{40\% + 11} = \frac{4096}{40\% + 13} = \frac{20480}{40\% + 14} = \frac{1}{40}$ $\frac{1024}{1024} = \frac{1024}{1024} = \frac{2560}{256} = \frac{256}{100}$
	=	$\frac{40\% + 1}{40\% + 10} = \frac{16384}{40\% + 11} = \frac{4096}{40\% + 13} = \frac{20480}{40\% + 14} = \frac{1}{40}$ $\frac{1024}{40\% + 17} = \frac{1024}{40\% + 19} = \frac{2560}{40\% + 20} = \frac{256}{40\% + 21} = \frac{2}{40}$
	=	$\frac{400}{400} + \frac{16384}{40000} + \frac{16384}{400000000000000000000000000000000000$
	=	$\frac{40\% + 1}{40\% + 10} = \frac{16384}{40\% + 11} = \frac{4096}{40\% + 13} = \frac{20480}{40\% + 14} = \frac{1}{40}$ $\frac{1024}{40\% + 17} = \frac{1024}{40\% + 19} = \frac{2560}{40\% + 20} = \frac{256}{40\% + 21} = \frac{1}{40}$ $\frac{640}{40\% + 24} + \frac{64}{40\% + 25} = \frac{64}{40\% + 27} = \frac{16}{40\% + 29} = \frac{16}{40}$
	=	$\frac{400}{400} + \frac{1}{400} + \frac{160}{400} + \frac{1600}{4000} + \frac{1600}{40000000000000000000000000000000000$

$$\tan^{-1}\left(\frac{4}{5}\right)$$

$\frac{1}{262144}\sum_{k=0}^{\infty}$	$\frac{1}{1048576^{k}}$			
262144	262144	131072	65536	81920
$\frac{1}{40 k + 3}$	40 k + 4	40 k + 6	$\frac{1}{40 k + 7}$ +	40 k + 1
8192	4096	1024	1024	
40 k + 14	$\frac{1}{40 k + 15}$	$+\frac{1}{40 k+19}$	$\frac{1}{7} + \frac{1}{40 k + 2}$	20 +
512	256	64	64	
40 k + 22	$\frac{1}{40 k + 23}$	$+\frac{1}{40 k+27}$	$\frac{1}{7} + \frac{1}{40 k + 2}$	28 40
16	4	4	2	
40 k + 31	$+\frac{1}{40 k + 35}$	$+\frac{1}{40 k+36}$	$\frac{1}{5} + \frac{1}{40 k + 3}$	38 40

the finding one of which is a given as a problem by Bailey et al. (2006, p. 225).

SEE ALSO: Euler's Machin-Like Formula, Gauss's Machin-Like Formula, Inverse Cotangent, In Formula, Machin-Like Formulas, Tangent. [Pages Linking Here]

RELATED WOLFRAM SITES: http://functions.wolfram.com/ElementaryFunctions/ArcTan.

REFERENCES:

Abramowitz, M. and Stegun, I. A.(Eds.). "Inverse Circular Functions." §4.4 in *Handbook of Mathematical Func Tables, 9th printing.* New York: Dover, pp. 79-83, 1972.

Acton, F. S. "The Arctangent." In Numerical Methods that Work, upd. and rev. Washington, DC: Math. Assoc.

Apostol, T. M. Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. Waltha

Arndt, J. "Completely Useless Formulas." http://www.jjj.de/hfloat/hfloatpage.html#formulas.

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. *Experimental Mathem* http://crd.lbl.gov/~dhbailey/expmath/maa-course/hyper-ema.pdf.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143 and 220,

Borwein, J.; Bailey, D.; and Girgensohn, R. "Euler's Continued Fraction." §1.8.2 in *Experimentation in Matherr* A. K. Peters, p. 30, 2004.

Bronshtein, I. N. and Semendyayev, K. A. Handbook of Mathematics, 3rd ed. New York: Springer-Verlag, p. 7

Bromwich, T. J. I. and MacRobert, T. M. An Introduction to the Theory of Infinite Series, 3rd ed. New York: Ch

Castellanos, D. "Rapidly Converging Expansions with Fibonacci Coefficients." Fib.Quart. 24, 70-82, 1986.

Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.

Conway, J. H. and Guy, R. K. "Størmer's Numbers." The Book of Numbers. New York: Springer-Verlag, pp. 24

GNU C Library. "Mathematics: Inverse Trigonometric Functions." http://www.gnu.org/manual/glibc-2.2.3/

Gosper, R. W. "Joerg Arndt kindly forwarded me." math-fun@cs.arizona.edu posting, Jan.14, 1997.

Harris, J. W. and Stocker, H. Handbook of Mathematics and Computational Science. New York: Springer-Verla

Hildebrand, J. D. "Arctan() Appreciation Home Page!" http://www.opensky.ca/~jdhildeb/arctan/.

Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 in *Handbook of Mathematical Formulas anc* 124-128, 2000.

Lagrange, J.-L. "Sur l'usage des fractions continues dans le calcul intégral." *Nouv.mém.de l'académie royale a* Reprinted in *Oeuvres, Vol. 4*, pp. 301-302.

Lambert, J. L. Beiträge zum Gebrauch der Mathematik und deren Anwendung. Theil 2. Berlin, 1770.

Lehmer, D. H. "On Arccotangent Relations for π ." Amer. Math. Monthly **45**, 657-664, 1938b.

Olds, C. D. Continued Fractions. New York: Random House, 1963.

Salamin, G. Item 137 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. *HAKMEM*. Cambridge, MA: MIT Artificia Feb.1972. http://www.inwap.com/pdp10/hbaker/hakmem/pi.html#item137.

Sloane, N. J. A. Sequences A005408/M2400, A033999, A075553, and A075554 in "The On-Line Encyclopedia

Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 in An Atlas of Functions. Washington

Todd, J. "A Problem on Arc Tangent Relations." Amer. Math. Monthly 56, 517-528, 1949.

Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.

Zwillinger, D.(Ed.). "Inverse Circular Functions." §6.3 in CRC Standard Mathematical Tables and Formulae. Bo

LAST MODIFIED: February 25, 2006

CITE THIS AS:

Weisstein, Eric W. "Inverse Tangent." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.

© 1999 CRC Press LLC, © 1999-2006 Wolfram Research, Inc. | Terms of Use