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Inverse Tangent

 

The inverse tangent is the multivalued function  (Zwillinger 1995, p. 465), also denoted

79; Harris and Stocker 1998, p. 311; Jeffrey 2000, p. 124) or  (Spanier and Oldham 1987, p. 333; Gradshteyn and Ryzhik
p. 208; Jeffrey 2000, p. 127), that is the inverse function of the tangent. The variants 

1997, p. 70) and  are sometimes used to refer to explicit principal values of the inverse
always made (e.g,. Zwillinger 1995, p. 466).  

The inverse tangent function  is plotted above along the real axis. 

 

Worse yet, the notation  is sometimes used for the principal value, with  being used for the multivalued function 

(Abramowitz and Stegun 1972, p. 80). Note that in the notation  (commonly used in North America and in pocket calculators

worldwide),  denotes the tangent and -1 the inverse function, not the multiplicative inverse. 

The principal value of the inverse tangent is implemented as ArcTan[z] in Mathematica. In the GNU C library, it is implemented as 

(double x).  

  

The inverse tangent is a multivalued function and hence requires a branch cut in the complex

places at  and . This follows from the definition of  as  

In Mathematica (and in this work), this branch cut definition determines the range of 
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taken, however, as other branch cut definitions can give different ranges (most commonly, 

The inverse tangent function  is plotted above in the complex plane. 

 

 has the special values 

 

The derivative of  is 

 

and the indefinite integral is  
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The complex argument of a complex number  is often written as  

where , sometimes also denoted , corresponds to the counterclockwise angle from the positive

 and . Plots of  are illustrated above for real values of  and . 

A special kind of inverse tangent that takes into account the quadrant in which  lies and is returned by the 
x), the GNU C library command atan2(double y, double x), and the Mathematica command 

range . In the degenerate case when ,  

The usual  has the Maclaurin series of 

 

(Sloane's A033999 and A005408). A more rapidly converging form due to Euler is given by 

for real  (Castellanos 1988). This is related to the formula of Euler given by 

 

where  
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The inverse tangent formulas are connected with many interesting approximations to pi  

(Sloane's A075553 and A075554).  

The inverse tangent satisfies  

for , 

 

for all complex , 

 

for all real , where equality for the last equation is understood to be in the limit as , and 

In terms of the hypergeometric function,  

for complex , and 
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for real  (Castellanos 1988). 

 

Castellanos (1986, 1988) also gives some curious formulas in terms of the Fibonacci numbers

where  

and  is the largest positive root of 

 

The inverse tangent satisfies the addition formula  

for , as well as the more complicated formulas 

 

the latter of which was known to Euler. Another interesting inverse tangent identity attributed to Charles Dodgson
Lehmer (1938b; Bromwich 1965, Castellanos 1988ab) is  

where  

and . 

 

The inverse tangent has continued fraction representations  
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(Lambert 1770; Lagrange 1776; Wall 1948, p. 343; Olds 1963, p. 138) and  

due to Euler and sometimes known as Euler's continued fraction (Borwein et al. 2004, p. 30). 

To find  numerically, the following arithmetic-geometric mean-like algorithm can be used. Let 

Then compute  

and the inverse tangent is given by  

(Acton 1990).  

An inverse tangent  with integral  is called reducible if it is expressible as a finite sum

where  are positive or negative integers and  are integers .  is reducible iff all the 

the prime factors of  for , ..., . A second necessary and sufficient condition is that the largest

less than . Equivalent to the second condition is the statement that every Gregory number

a sum in terms of s for which  is a Størmer number (Conway and Guy 1996). To find this decomposition, write

so the ratio  

is a rational number. Equation (50) can also be written  

Writing (�) in the form  
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allows a direct conversion to a corresponding inverse cotangent formula  

where  

Todd (1949) gives a table of decompositions of  for . Conway and Guy (1996) give a similar table in terms of 

numbers.  

Arndt and Gosper give the remarkable inverse tangent identity  

There is an amazing set of BBP-type formulas for  
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the finding one of which is a given as a problem by Bailey et al. (2006, p. 225).  

SEE ALSO: Euler's Machin-Like Formula, Gauss's Machin-Like Formula, Inverse Cotangent, Inverse

Formula, Machin-Like Formulas, Tangent. [Pages Linking Here]  

RELATED WOLFRAM SITES: http://functions.wolfram.com/ElementaryFunctions/ArcTan/
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